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ABSTRACT                        Extracellular xylanase production of Bacillus cereus BSA1 was optimized under 
submerged fermentation using Taguchi orthogonal array (OA).  An L18 layout of OA was con-
structed at three-levels of six factors, i.e. temperature, pH, and xylan, Na2HPO4, NH4NO3 and 
NaCl concentrations, influencing the xylanase synthesis. The enzyme production was studied in 
18 parallel batch systems using different levels of each factor. The results were processed with 
Qualitek-4 software using ‘bigger is better’ quality character, and combination of 35 oC; pH 6.0; 
and xylan 0.5; NH4NO3 0.5, Na2HPO4, 0.1; NaCl 0.05 concentrations (in w/v %) with a predictive 
xylanase production of 7.404 U/ml was obtained. Fermentation experiment was performed for 
further validating the statistical output, and it resulted 10.24% in the xylanase yield (from 6.44 
U/ml to 7.10 U/ml) as compared to one variable at a time (OVAT) design. Interaction effects of 
the factors individually and in combination can be evaluated by using Taguchi method design 
of experiment. Acta Biol Szeged 59(2):189-195 (2015)
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Introduction

Biodegradation of xylan, requires various xylanolytic en-
zymes of which endo-β-1, 4- xylanases (EC 3.2.1.8) de-
polymerize the xylan backbones into short xylooligosac-
charides (Beg et al. 2001; Pandey et al. 2014). Besides, a set 
of accessory enzymes including α-L-arabinofuranosidases, 
α-D-glucuronidases, and acetyl xylan esterases are also 
needed for proper degradation (Sukhumsirichart et al. 2014). 
Extracellular xylanases derived from microorganisms have 
tremendous industrial interest. The most important fields of 
the applications are the biobleaching and biopulping, where 
the xylanases facilitate the release of lignin from paper pulp 
and thereby reduce the bleaching agents such as chlorine 
(Beg et al. 2001; Polizeli et al. 2005). Microbial xylanases 
are important in the biofuel preparation from agro-wastes, and 
they are also widely applied in food, feed (Subramaniyan et 
al. 1997) and agro fiber industries (Kanimozhi and Nagalak-
shmi 2014). Along with cellulase and pectinase it occupies 

about 20% of global enzyme market (Polizeli et al 2005). The 
global market of industrial enzymes is increasing rapidly. It 
was only 1 million US dollars in 1970 and became 4.5 billion 
dollars in 2012 and is thought to reach 7.1 billion by 2018 
(Kalim et al. 2015). In certain industrial processes, bacterial 
xylanases are more preferred than fungal enzymes because 
of their thermo- and alkali-tolerance. (Beg et al. 2001). Ba-
cillus species are excellent sources of xylanases having high 
activity under alkaline pH and high temperature conditions 
(Subramaniyan and Prema 2002).

The production cost of industrial enzymes is highly in-
fluenced by the cost of the growth medium (Katapodis et al. 
2007), therefore, it is important to optimize the composition 
of the growth medium for high-yield enzyme production. 
The conventional optimization procedures including one 
factor at a time (OVAT) design, require time consuming 
experimental work and cannot provide information about 
the mutual interactions of the parameters (Rao et al. 2008; 
Das Mohapatra et al. 2009). On the contrary, statistical 
design of experiments helps to investigate the influence of 
controlled factor in multivariate system. Taguchi orthogonal 
array (OA) design of experiment (DOE) involves the study 
of any given system by a set of independent variables (fac-
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tors) over specific levels of interest (Taguchi 1986; Roy 1990; 
Mitra 1998). This approach also establishes the relationship 
between variables and operational conditions (Roy 2001). In 
this methodology, the design is made by selecting the best 
conditions that produce consistent performance (Roy 2001) 
and the results from small-scale experiments are valid to scale 
up the performance (Phadke and Dehnad 1988). ANOVA 
(analysis of variance) analysis of experimental data gives 
statistical relationship of the output. Taguchi methodology has 
successfully been applied to optimize the production of many 
industrial enzymes such as alkaline protease (Laxman et al. 
2005), laccase (Prasad et al. 2005), tannase (Das Mohapatra 
et al. 2009), acid amylase and L-asparaginase, (Prakasan et al. 

Table 1. Selected culture condition factors and assigned levels 
for the orthogonal design.

Serial No. Factor Level 1 Level 2 Level 3

1. Temperature (°C) 30 35 40
2. pH 5 6 8
3. Xylan concentration 

(g/100 ml)
0.3 0.5 1.0

4. Phosphate concentration 
(g/100 ml Na2HPO4)

0.05 0.1 0.5

5. Nitrogen concentration 
(g/100 ml as NH4NO3)

0.1 0.3 0.5

6. Na+  concentration (g/100 
ml as NaCl)

0.05 0.5 1.0

Figure 1. Individual factors performance at different levels.
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2007). This method is superior over the other similar statisti-
cal approaches, including the Response Surface Methodology 
(RSM), because much less time is required to conduct the 
experiment (Aggarwal et al. 2008). Additionally, Benyounis 
and Olabi (2008) reported that Taguchi method could improve 
the reliability at low cost as compared to RSM and Artificial 
Neural Networks (ANNs).

This study presents the statistical optimization of sub-
merged culture conditions for xylanase production by Bacillus 
cereus BSA1 using Taguchi method. Multifactorial optimiza-
tion of bacterial xylanase production has not been reported 
until to date. 

Materials and Methods

Microorganisms and culture conditions 

Bacillus cereus BSA1 has been used in this study for enzyme 
production (Mandal et al. 2008). Unless otherwise stated, xy-
lanase production was performed in 250-ml Erlenmeyer flasks 
containing 50 ml of liquid medium (composition in w/v%: 
NH

4
NO

3
 0.5; NaCl 0.05; Na

2
HPO

4
 0.05; xylan 0.5.) The cul-

ture medium was inoculated with 1% (v/v) freshly prepared 
inoculums (bacterial count in the inoculum was about 4.96 
× 108/ml) and was fermented in a rotary shaker (120 rpm) at 
35 °C for 84 h. After centrifugation (5000  g for 10 min) 
the cell-free supernatant was used as crude enzyme extract. 
The experiments were done in triplicate.

Table 2. L18 (3
6) orthogonal array of designed experiments.

Serial. No. 1 (Temperature) 2 (pH) 3 (Xylan) 4 (Na2HPO4) 5 (NH4NO3) 6 (NaCl) Xylanase activity (U/ml)

1 1 1 1 1 1 1 2.939
2 1 2 2 2 2 2 3.206
3 1 3 3 3 3 3 3.156
4 2 1 1 2 3 3 4.276
5 2 2 2 3 3 1 6.876
6 2 3 3 1 1 2 6.13
7 3 1 2 1 2 3 4.119
8 3 2 3 2 1 3 4.91
9 3 3 1 3 2 1 3.95
10 1 1 3 3 2 2 4.013
11 1 2 1 1 3 3 2.673
12 1 3 2 2 1 1 4.90
13 2 1 2 3 1 3 6.356
14 2 2 3 1 2 1 6.596
15 2 3 1 2 3 2 5.383
16 3 1 3 2 3 1 3.73
17 3 2 1 3 1 2 4.19
18 3 3 2 1 2 3 4.56

Figure 2. Relative influence of significant factors and interaction.

Figure 3. Optimum performance with the contributions of major 
factors.



192

Mandal et al.

Assay of xylanase activity

Xylanase activity was estimated by determining the released 
reducing sugar from the birch wood xylan (Fluka) with 
3,5-dinitrosalicylic acid (DNS; Miller 1959). The reaction 
mixture contained 0.4 ml phosphate buffer (0.2 M, pH 7.0), 
0.4 ml of 1% (w/v) xylan and 0.2 ml crude enzyme solution. 
After 30 minutes of incubation at 55 °C, 1 ml of 3% (w/v) 
DNS reagent was added to stop the reaction. The solution 
was boiled in a water bath for 15 min, then, absorbance was 

measured at 540 nm (Systronics Digital Spectrophotometer 
105, India) against a blank without enzyme. Xylanase acti-
vity was determined by using a calibration curve for D-xylose 
(Sigma). One unit of xylanase activity (U) was defined as the 
amount of enzyme required to release 1 µmol of xylose per 
minute under the assay conditions.

Taguchi design 

The Taguchi experimental design of Das Mohaaptra et al. 
(2009) was followed during the optimization procedures. 
Six most influensive factors for xylanase biosynthesis like 
temperature, pH, and xylan, phosphate (Na

2
HPO

4
), nitrogen 

(NH
4
NO

3
) and metal ion (Na+) concentrations as identified 

through SmF (Mandal et al. 2008), and their effective levels 
were chosen (Table 1). The three levels of the factors were set 
as low, intermediate and high. In the next step, the orthogonal 
matrix of experiment was designed (Table 2).

Software

Qualitek-4 software (Nutek Inc., MI, USA) compatible for 

Table 3. Main effects of selected factors in L18 (3
6) orthogonal 

array of designed experiments.

Serial. No. Factors Level 1 Level 2 Level 3 L2-L1

1 Temperature 3.481 5.936 4.243 2.455
2 pH 4.238 4.742 4.679 0.503
3 Xylan 3.902 5.002 4.756 1.1
4 Na2HPO4 4,503 4.4 4.757 -0.103
5 NH4NO3 4.905 4.4333 4.323 -0.473
6 NaCl 4.832 4.507 4.321 -0.326

Table 4. Analysis of variance (ANOVA) in L18 (3
6) orthogonal array of designed experiments.

Serial No. Factors DOF 
(f)

Sums of squares 
(S)

Variance (V) F Ratio 
(F)

Pure sum (S’) Percentage 
P (%)

1 Temperature 2 56.814 28.407 154.530 56.446 65.528
2 pH 2 2.715 1.357 7.384 2.347 2.725
3 Xylan 2 12.015 6.007 32.680 11.647 13.521
4 Na2HPO4 2 1.217 0.608 3.311 0.849 0.986
5 NH4NO3 2 3.437 1.718 9.351 3.070 3.564
6 NaCl 2 2.403 1.201 6.537 2.035 2.363

Other/error 41 7.535 0.183 - - 11.313
Total 53 86.138 100.00

Serial. No. Factors Columns SI (%) Reserved column Levels

1 Xylan × NaCl 4 × 7 73.05 3 [2,1]
2 pH × NaCl 3 × 7 55.38 4 [2,1]
3 (NH4)2NO3 × NaCl 6 × 7 53.43 1 [1,3]
4 Xylan × NH4NO3 4 × 6 52.40 2 [2,1]
5 Na2HPO4  × NH4NO3 5 × 6 50.60 3 [1,2]
6 Temperature × Na2HPO4 2 × 5 36.50 7 [2,3]
7 Xylan × Na2HPO4 4 × 5 30.29 1 [2,3]
8 pH × (NH4)2NO3 3 × 6 26.88 5 [3,1]
9 pH × Na2HPO4 3 × 5 26.14 6 [2,3]
10 Temperature × pH 2 × 3 25.79 1 [2,2]
11 Na2HPO4  × NaCl 5 × 7 10.47 2 [3,1]
12 Temperature × NaCl 2 × 7 8.76 5 [2,1]
13 Temperature × NH4NO3 2 × 6 7.48 4 [2,1]
14 Temperature × Xylan 2 × 4 7.1 6 [2,2]
15 pH × Xylan 54 × 4 0.49 7 [2,3]

Table 5. Estimated interaction of severity index for different factors in L18 (3
6) orthogonal array of designed experiments.
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automatic design of Taguchi experiments was used. This 
software is equipped to use L-4 to L-64 arrays along with 
selection of 2 to 63 factors with two, three and four levels to 
each factor. The automatic design option allows Qualitek-4 
to select the array used and assign factors to the appropriate 
columns.

Results and discussion

Water pollution is an acute problem of the pulp and paper 
industries due to the chlorinated and other absorbable organic 
compounds released during bleaching process (Polizeli et 
al. 2005). This problem can be avoided by the application 
of microbial xylanolytic enzymes during the pre-bleaching 
processes. Microbial xylanases are frequently used in other 
biotechnological processes as well, therefore, it is very 
important to scale up of their enzyme production in the fer-
mentation process. 

The statistical approaches help to establish an optimized 
condition more easily and can make it feasible in industrial 
exploitation. Therefore, Taguchi OA was employed to study 
the effect of interaction of most essential parameters for 
enhancing xylanase production by B. cereus BSA1. The 
variations of xylanase production at different selected levels 
were represented in Figure 1. Among the tested six factors, 
temperature in level 2, xylan and nitrogen concentration at 
level 2 and level 3, respectively, have the highest influence 
on xylanase yield. Other factors

 
showed lower effect on the 

enzyme production. The difference between level 2 and level 
1 (L

2
-L

1
) of each factor (Table 3) indicates the relative influ-

ence of it on xylanase synthesis (Taguchi 1986). Increased 
level of NaCl caused decrease in enzyme production (Table 
3). Figure 2 shows that the enzyme yield was highly influ-
enced by temperature. Optimum performance with the major 
factors contribution on the xylanase production is represented 
in Figure 3. The percentage of contribution of each factor with 
interactions was again tested by ANOVA (Table 4). From the 
calculated ratios (F), it can also be revealed that temperature 

is the most significantly influencing factor for the xylanase 
production (Table 4). The next significant factors for the 
enzyme production in order to their relative influences were 
xylan > nitrogen > pH > Na+ > phosphate. The importance of 
temperature and pH in biosynthesis of exo-enzymes has been 
reported by many authors (Frost and Moss 1987; Kim and 
Dordick 1997; Tunga et al. 1999; Dhillon et al. 2000)

In the complex environment of the fermentation any 
individual factor may interact with any or all of the other 
factors creating a large number of variations. The interaction 
between two factors gives a better insight into the overall 
process analysis and it is possible to calculate through Ta-
guchi DOE by determining the severity index (SI). Severity 
index of the factors is represented in Table 5. In this table, 
the ‘column’ represents the locations to which the interacting 
factors are assigned. ‘Reserved column’ is used to study the 
interaction effect. ‘Levels’ indicated the factor levels desir-
able for the optimum conditions. Xylan and NaCl showed 
the highest severity index (73.05%). On the contrary, the 
lowest SI (0.49%) was observed in between pH and xylan 
(Table 5). An individual factor might show better effect but 
in combination with other, the effect became relatively low, 
which may due to the interactive effect of different factors 
(Prasad et al. 2005).

Optimum condition of each factor and their performance 
in terms of contribution for achieving, higher xylanase yield 
were summarized in Table 6. The highest xylanase activity 
can be achieved with the following optimized culture con-
ditions: 35 °C; pH 6.0; xylan, 0.5% (w/v); Na

2
HPO

4
 0.5% 

(w/v); NH
4
NO

3 
0.1% (w/v), and NaCl 0.05%. The expected 

result at optimum condition was 7.404 U/ml, with total con-
tribution from all the factors being 2.850 U/ml with grand 
average performance of 4.553 U/ml. To validate the proposed 
experimental methodology, fermentation was performed for 
xylanase production by employing the optimum level of each 
individual factor of Taguchi prediction. The obtained enzyme 
yield was 7.10 U/ml, which was 10.24% higher than that 
observed during OVAT optimization (the enzyme yield was 
6.44 U/ml in that studies). This increase can be attributed to 
the interaction among the factors (Sharma et al. 2007). The 
experimental result was very close to the predicted value 
(7.404 U/ml) and thus the statistical evaluation was validated. 
In a previous study, the xylanase yield of Trichoderma strain 
has also been increased by using Taguchi methodology (Azin 
et al. 2007).

Conclusions

Xylanase production of B. cereus BSA1 was successfully 
improved through optimization of its culture conditions with 
Taguchi method. Using six factors (temperature, pH, con-

Serial No. Factors Values Level Contribution

1 Temperature 35 2 1.382
2 pH 6 2 0.188
3 Xylan 0.5 2 0.449
4 Na2HPO4 0.5 3 0.203
5 NH4NO3 0.1 1 0.351
6 NaCl 0.05 1 0.278

Table 6. Optimum of culture conditions and their contribution.

Current grand average of performance: 4.553 U/ml. Total contribution from all 
factors: 2.850 U/ml. Expected result at optimum condition: 7.404 U/ml.
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centration of xylan, Na
2
HPO

4
, NH

4
NO

3 
and NaCl,) at three 

levels, this analysis established the participation as well as 
the interactions of the factors. This is the first report on the 
optimization of both physical and chemical conditions of the 
fermentation environment for bacterial xylanase production 
using Taguchi methodology.
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